利滚利公式
复利终值的计算公式例子
复利终值公式:F=P×(1+i)n,即F=P×(F/P,i,n)。其中,(1+i)n称为复利终值系数,用符号(F/P,i,n)表示。复利是计算利息的一种方法。按照这种方法,每经过一个计息期,要将所生利息加入本金再计利息,逐期滚算,俗称“利滚利”。
一、复利是计算利息的一种方法。按照这种方法,每经过一个计息期,要将所生利息加入本金再计利息,逐期滚算,俗称“利滚利”。这里所说的计息期是指相邻两次计息的时间间隔,如年、月、日等。除非特别指明,计息期为1年。所谓"复利",实际上就是我们通常所说的"利滚利"。即每经过一个计息期,要将利息加入本金再计利息,逐期计算。终值是指最后得到的数据。因此,复利终值就是指一笔收支经过若干期后再到期时的金额,这个金额和最初的收支额事实上具有相同的支付能力。
二、要了解复利终值,必须先了解单利。单利是在任一个计息期均仅按照初始资本计算利息,而不计算到期利息的利息的一种计息方式。银行存款多用这种计息方式。公式为:相对的,复利是在任一个计息期均按照本息和计算利息,而仅不计算初始资金的利息的一种计息方式。银行贷款多用这种计息方式。公式为:上述是计算复利终值的一般公式,其中的被称为复利终值系数或1元的复利终值,用符号(F/P,i,n)表示。例如,(F/P,6%,3)表示利率为6%的3期复利终值的系数。为了便于计算,可编制“复利终值系数表”备用。该表的第一行是利率i,第一列是计息期数n,相应的值在其纵横相交处。通过该表可以查出,(S/P,6%,3)=1.1910(保留四位小数的近似值)。在时间价值为6%的情况下,存入时的1元和3年后的1.1910元在经济上是等效的,根据这个系数可以把现值换算成终值。
三、例:张三拟投资10万元于一项目,该项目的投资期为5年,每年的投资报酬率为20%,张三盘算着:这10万元本金投入此项目后,5年后可以收回的本息合计为多少?分析:由于货币随时间的增长过程与复利的计算过程在数学上是相似的,因此,在计算货币的时间价值时,可以使用复利计算的各种方法。张三的这笔账实际上是关于"复利终值"的计算问题。假如张三在期初投入资金100000元,利息用i表示,那么:经过1年的时间后,张三的本利和
(元)
10000元1分月息利滚利怎么算
什么是利滚利顾名恩意就是利息加上利息,也就是我们所说的复利,这只能从第二个月开始算,现在银行所说利息只是单利根据复利的计算公式二本金(1十0.01)^2二10000(1十0.01)^2=10201(含本金10000)利息二201元,如果是单利两个月利息是200元,复利时间越长差距就越大
复利计算公式和方法
复利的计算是对本金及其产生的利息一并计算,也就是利上有利。
复利计算的特点是:把上期末的本利和作为下一期的本金,在计算时每一期本金的数额是不同的。
复利的计算公式是:F=P*(1+i)^n。
F—终值(n期末的资金价值或本利和,FutureValue),指资金发生在(或折算为)某一特定时间序列终点时的价值;
P—现值(即现在的资金价值或本金,PresentValue),指资金发生在(或折算为)某一特定时间序列起点时的价值;
i—计息周期复利率;
n—计息周期数。
复利现值=F×(P/F,i,n),(P/F,i,n)为复利现值系数
复利现值是指在计算复利的情况下,要达到未来某一特定的资金金额,现今必须投入的本金。
复利终值=P×(F/P,i,n),(F/P,i,n)为复利终值系数
复利终值是指本金在约定的期限内获得利息后,将利息加入本金再计利息,逐期滚算到约定期末的本金之和。
复利终值系数(即复利)是指在每经过一个计息期后,都要将所生利息加入本金,以计算下期的利息。这样,在每一计息期,上一个计息期的利息都要成为生息的本金,即以利生利,也就是俗称的“利滚利”